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Convective stability of fluid in a gravity field is usually investigated 
under the assumption that the equilibrium temperature gradient does not 
depend upon time. However. unsteady equilibrium of a fluid is also 
possible when the equilibrium temperature varies with time according to 
a law that is determined by the unsteady heating conditions. Investiga- 
tion of the stability of such an unsteady equilibrium has, to our know- 
ledge, not been carried out. 

Among various possible unsteady equilibria, the most interesting is 
probably the case when the equilibrium temeprature gradient changes 
periodically with time. In this case the fluid is a singular oscillating 
system with a periodically varying parameter, and one can expect under 
such conditions the appearance of interesting phenomena of the type of 
parametric resonance, 

Be investigate below the stability of the equilibrium of a plane 
horizontal layer of fluid with a periodically varying temperature 
gradient. The solution of this case makes it possible to see clearly the 

characteristic singularity of the problem. 

1. We consider a plane horizontal layer of fluid, bounded by the 

planes 2 = + h (the z-axis being directed YertiGalfyf. In equilibrium 

the velocity of the fluid Y = 0, and the equilibrium temperature T, = 

T&, t) satisfies the unsteady equation of heat; conduction 

where x is the coefficient of heat conduction. \Ye will consirfer heating 
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conditions such that the equilibrium temperature gradient in the fluid 

varies periodically about some mean value with frequency oO. Considera- 

tion is restricted to the regime of low frequencies, satisfying the con- 

dition 

oo<xlh2 (l-2) 
(weak thermal skin effect). In this case the equilibrium temperature 

gradient does not depend upon z 

dT, / dz = - A0 + aocp(t) (1.3) 

where T(t) is a modulating function with period 2r/w,,, and the constants 

A, and a,, represent the mean temperature gradient and its amplitude of 

modulation. 

For the investigation of the stability of unsteady equilibrium we ob- 

tain from the equations of convection [1I the usual form of small-dis- 
turbance equations 

f3V 

-=-+p+vAv-gfiT at 
dT 
x+vzs=xCT, div v = 0 

(1.4) 

(1.5) 

In contrast with the small-disturbance equations of steady equilibrium, 

here one of the coefficients, aT,_,/az, depends upon time. 

Considering periodic perturbations in the xy plane, we suppose that 

all quantities in equations (1.4) to (1.5) are proportional to 

exp {i(klx f k,y)I. Eliminating v%, vY and p, we obtain for the parts of 

the perturbation of temperature T and vertical velocity vz depending 
upon z and t 

+ (vzZ’ - k2v,) - Y (vz”” - 2k2vZ” + k4v,) = - @k2T (k2 = k12 + k22) (1.6) 

g + v’, To’ = x (T” - k2T) (l-7) 

Jlere primes denote differentiation with respect to z. 

The simplest dependence of the perturbations upon z is obtained in 

the case when the layer is bounded by free layers (Rayleigh's case) 

T = 0, v, = vzfl = 0 at z=*Ih (1.3) 

Then setting 

vz = v (t) cos 5 2, T = II (t) cos + z (1.9) 
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we obtain, substituting (1.9) into (1.6) and (1.5), equations for the 

amplitudes v(t) and -r(t) 

gPka v +yx2v = -z, 
x2 

i + xx2z = - Tofu ( 3x2 
x2 = ka + 4ha ) (1.10) 

Eliminating -r(t) from this system, we obtain the equation 

i +x2x(1 +;)~+[g~T,'+y~~4]v = 0 (1.11) 

Choosing the unit of time as l/~~J(vx) and substituting T,,' from 

(1.3), we put this equation into the form 

v +2e; + [1 - R + q(t)1 v = 0 (3.12) 

Here 

R = &Ao k2 __ 
X6 ’ 

r _ gbo ka 
x6 ’ 

2s=f+P 
vx vx 1/p’ 

P’$ 

The function q(t) in equation (1.12) has the period 

T z2? -?Y- 
P* ( 

p* = 
9 Jfa 1 

Rere p * is the dimensionless frequency of modulation. 

'Ihus the behavior with time of the perturbations is governed by the 

Hill equation with a term representing damping. 

? If the parametric excitation is absent (r = 0), we obtain the well- W. 

known problem of Rayleigh [21 f or the stability of equilibrium of a 

layer with free surfaces and a steady temperature gradient. In this case 

all coefficients of the equation for v are constant, and the solution 

depends upon time according to the law exp(ht). For the decrement h we 

find 

(2.1) 

As is evident from (2.1), for heating from above (R < 0) the real 

parts of A and A_ are negative for all R (disturbances are damped), 

where for t RI < l/4(1 - P)2/P the decrements A, and A_ are real (mono- 

tone damping) and for [RI > l/4(1 - P)2/P the decrements A+ and h_ are 

complex-conjugate (oscillatory damping). 

For heating from below (R > 0) both decrements are always positive 

(monotone perturbations), with h_ < 0 for all R, and A, growing with in- 

creasing R and becoming positive at R = 1, which represents the limit 

of stability of stationary equilibrium. 
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In the presence of parametric excitation the problem is to determine 

the regions of stability and instability for the solution of equation 

(1.12) as they depend upon the values of the parameters R, r, p and s. 
* 

The case of greatest interest is evidently sinusoidal modulation: 

9(t) = sin p,t. In this case the boundaries of the region of stability 

can for small values of the excitation parameter r be found by means of 

the method of a small parameter M. Our system, however, possesses 

strong damping: the parameter E as a function of the Prandtl number P 

has a minimum at P = 1 (v = x), where smin = 1. lherefore arbitrary 

(not small) values of the parameter r are of interest. In this regime 

the stability boundaries of the solution of equation (1.12) can be found 

more easily if the sinusoidal modulation is replaced by a rectangular 

one. As is well known [4,51, the general properties of the solution of 

Hill's equation are almost unchanged by such a substitution. 

If the modulation follows a rectanplar law (Fig. l), we have on 

Sections 1 and 2 9 = f 1, and the general solution of equation (1.12) 

v(l) = e+l (Cl sin at + C, cos at), a=l/h--R-~2-r (2.2) 
d2) = e-Bt (C, sin fJt + C, cos @), p = 1/l - R - c2 +r (2.3) 

At t = 0, v and ; must be continuous 

U(i) (0) = 79 (O), 2,'(l) (0) = 2;w (0) (2.4) 

We will seek a periodic solution of equation (1.12). Ve therefore re- 

quire fulfillment of the conditions of periodicity 

21(Z) (n / p*) = f V(i) (-x / p*), 7;(Z) (3% / p*) = f &)(- n / p*) (2.5) 

A solution satisfying (2.5) would represent steady oscillation with 

frequency 

Q = np* (2.6) cp 
- 

where the plus sig in (2.5) corresponds 
t 7 

to integral values of n and the minus sign 
t I I21 I I I i t 

to half-integral values. p.n~ 10 7.r 19 

-A* 
IF 

Conditions (2.4) and (2.5) give a system 4 Ix* 

of four linear homogeneous equations for Fig. 1. 

the constants Ci. This system has a non- 

trivial solution if its determinant vanishes. Thus we find the condi- 

tions under which a periodic solution of equation (1.12) is possible 

P a2 + P” cos $ cos -jy- - ___ 
24 

(p = f-$ (2.7) 
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The relation (2.7) determines the stability boundaries for unsteady 

equilibrium. Stable equilibrium corresponds to values of the parameters 

R, r, p and E for which the left side of (2.7) lies within the interval 

(- cash (2&), cash (24~)). 

3. For fixed values of the damping coefficient E and the parameter R, 

which determine the mean temperature gradient, equation (2.7) gives the 

relation between the amplitude r and the frequency p of excitation on 

the stability boundary. We give the results of numerical solution of 

equation (2.7). 

We consider first the region - OJ < R < 1. In the absence of excita- 

tion (T. = 0) such values of R correspond to stable equilibrium (arbi- 

trary heating from above, or heating from below with a temperature 

gradient less than the critical). In the presence of excitation (r f 0) 

577 5 
1 

Y- 4 

3- 3 

z- 2 

1- 1 

I 1 1 1 , k, 
0 1 2 3 4 5 0 I 2 3 4 

Fig. 2. Fig. 3. 

regions of instability appear. For example, Fig. 2 shows the first 

regions of instability for values of the parameters R = 0 and E = 1, in 

the coordinates (4 rr 8). For small r the equilibrium is stable for 

any frequency p. For fixed r > rl, where r1 is a certain threshold value, 

there appear, as seen in Fig. 2, intervals of frequencies corresponding 

to stability and instability (the regions of instability being cross- 

hatched). The intervals of stability contract with increasing r. The 

regions of instability show in Fig. 2 correspond to the integral and 

half-integral values n = l/2. 1, 3/2, 2. . . . in equation (2.6). The 
equations of the lines separating adjacent regions of instability have, 

for large r, the form* 

* The asymptotic behavior of the boundaries of the regions for large 
r does not depend upon the parameters R and E and is always given by 
equation (3.1). 
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$.&_i 1)2p (1 = 0, 1, 2,...) 

The threshold value of the excitation parameter is 

r1 = 3ea - (R - 2) (3.2) 
We consider now the range R > I. Under static conditions (r = 0) the 

equilibrium is unstable for R p 1. The modulating temperature gradient 
stabilizes the equilibrium for definite values of the frequency p and 
amplitude r of modulation. The form of the regions of stability and in- 
stability in the (Jr-, p-l) plane are different in the cases R 21 + E’. 

Suppose that 1 < R < 1 C E’. The form of the stability curves is 
evident from Fig. 3 (R =: 1.2, E2 = 2). In contrast to the case R c 1, a 
region of instability now appears adjacent to the coordinate axes (n=l 

in equation (2.6)). The equation of the boundary of this region for 

P 
-1 

- 02 is 

Above this region lies 
p-l) is equal to fl - r2. 
since r1 decreases and r2 

r,=2sv-R-i (3.3) 

a strip of stability, whose width (for large 
As R increases the stability strip shrinks, 
increases, and rl - r2 _ 0 as R -. 1 + f2. 

The form of the stability curves for R > 1 + EZ is evident from Fig.4 
(R = 4, s2 = 2). In this ease the equilibrium is unstable for practi- 
cally all values of the frequency and amplitude of excitation. However, 
for r > r3 there are narrow intervals of resonant frequency, for which 
parametric excitation leads to stabilization of the system (there is 
here a complete analogy with the behavior of an astatic pendulum with 
exciting support). The threshold value is 

r2 = s2 + (R - 1) (3.4) 

Figure 5 shows the threshold 
values rI, r2 and r3 as functions of 
R. From (3.2) and (3.3) it is possi- 

ble to determine the lowest critical 
value of the Rayleigh number R as a 
function of the amplitude of excita- 
tion r in the limiting case of low 

frequency (p -l >> 1). For I^ < 2~~ 
the critical value of R grows 
quadratically with increasing r; for 
* > 2e2 it decreases linearly Fig. 4. 
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R=1+-39-r (r > 2&Q) (3.6) 

We give also the values of the critical number R in the limiting 

case of high frequency (p -’ << 1) and small amplitude of modulation 

(r << 1). Expanding the left and right side of (2.7) in powers of l/p 

and r, we find 

Fig. 5. 

From the results obtained, it is evi- 

dent that periodic modulation of the 

temperature gradient significantly affects 

the onset of convection. Stability or in- 

stability of the equilibrium is determined 

not only by the mean temperature gradient, 

but also depends in a complicated way 

upon the amplitude and frequency of modu- 

lation. Under particular conditions this 

dependence has a resonant character. Ex- 

perimental investigation of convective 

stability would be of interest for un- 

steady equilibrium of a fluid, in particu- 

lar in the case of periodic modulation of 

the equilibrium temperature gradient. In an experiment it would hardly 

be possible to realize in pure form the conditions that were adopted as 

simplifying assumptions in the present work: rectangular modulation, 

free surfaces, absence of skin effect. One might suppose, however, that 

the qualitative deductions would be insensitive to these assumptions. 

We note in conclusion that an analogous effect should be observed 

also in the onset of hydrodynamic instability of a moving fluid. Thus 

in f61 the effect of modulation of the corner velocity upon the sta- 

bility of fluid motion between rotating cylinders was observed experi- 

mentally. 
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